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Motivated by the very recent fabrication of sub-10-nm-wide semiconducting graphene nanoribbons [X. Li et
al., Science 319, 1229 (2008)], where some of their band gaps extracted from transport measurements were
closely fitted to density-functional theory predictions for magnetic ordering along zigzag edges that is respon-
sible for the insulating ground state, we compute current-voltage (I-V) characteristics of finite-length zigzag
graphene nanoribbons (ZGNRs) attached to metallic contacts. The transport properties of such devices, at
source-drain bias voltages beyond the linear-response regime, are obtained using the nonequilibrium Green’s
function formalism combined with the mean-field version of the Hubbard model fitted to reproduce the local
spin-density approximation description of magnetic ordering. Our results indicate that magnetic ordering and
the corresponding band gap in ZGNR can be completely eliminated by passing large enough direct current
through it. The threshold voltage for the onset of band gap collapse depends on the ZGNR length and the
contact transparency. If the contact resistance is adjusted to experimentally measured value of =60 k(), the
threshold voltage for sub-10-nm-wide ZGNR with intercontact distance of =7 nm is =0.4 V. For some
device setups, including 60 k() contacts, the room-temperature I-V curves demonstrate steplike current in-
crease by one order of magnitude at the threshold voltage and can exhibit a hysteresis as well. On the other
hand, poorly transmitting contacts can almost completely eliminate abrupt jump in the /-V characteristics. The
threshold voltage increases with the ZGNR length (e.g., reaching =0.8 V for =13-nm-long ZGNR) which
provides possible explanation of why the recent experiments [Wang et al., Phys. Rev. Lett. 100, 206803
(2008)] on ~100-nm-long GNR field-effect transistors with bias voltage <1 V did not detect the I-V curve
signatures of the band gap collapse. Thus, observation of predicted abrupt jump in the /-V curve of two-
terminal devices with short ZGNR channel and transparent metallic contacts will confirm its zigzag edge
magnetic ordering via all-electrical measurements, as well as a current-flow-driven magnetic-insulator—

nonmagnetic-metal nonequilibrium phase transition.
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I. INTRODUCTION

The recent surprising discovery of graphene'—a one-
atom-thick layer of graphite—has introduced in a short pe-
riod of time a plethora of new concepts in condensed-matter
physics and nanotechnology, despite apparent simplicity of
the two-dimensional honeycomb lattice of carbon atoms that
underlies much of its unusual physics revolving around
Dirac-type low-energy electronic excitations.”> Examples in-
clude anomalous versions of mesoscopic transport effects,’!
topological insulators,> and low-dimensional carbon-based
magnetism,*~® to name just a few. Since driving a system out
of equilibrium typically corrupts its quantum coherence and
suppresses quantum interference effects, basic research ex-

periments have mostly been focused on the linear-response
1

regime.
At the same time, vigorous pursuit of carbon
nanoelectronics,”® envisioned around gated planar graphene

structures that promise to overcome some of the difficulties’
encountered by carbon nanotubes, has led to increasing num-
ber of experimentally demonstrated top-gated graphene
field-effect transistor (FET) concepts. In these setups,
micron-size graphene sheets®~!! or sub-10-nm-wide graphene
nanoribbons'> were employed to demonstrate room-
temperature graphene-FET operation with “on/off” current
ratios'> up to 10° high carrier mobility in sheet-based
FETs,'? large critical current densities,” and operating fre-
quency reaching!' =26 GHz.
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These experiments pose a challenge for theoretical and
computational modeling since they drive graphene nano-
structures into far-from-equilibrium regime due to the finite
applied bias voltage. The task is more demanding than typi-
cal linear-response-based analysis'*!* of potential graphene
devices due to the need to compute self-consistently devel-
oped potential and charge redistribution within the system in
nonequilibrium current-carrying state in order to keep the
gauge invariance' of the I-V characteristics intact.

In addition, the description of experimental devices often
requires to include much greater microscopic details'®!”7 than
captured by simplified effective models that resemble rela-
tivistic Dirac Hamiltonian for massless fermions'®!® or its
parent single r-orbital nearest-neighbor tight-binding
Hamiltonian.'* These include atomic (such as the presence of
hydrogen atoms which passivate edge carbon atoms'’) and
electronic structure (probed by the bias voltage defined en-
ergy window around the Dirac point), self-consistent charge-
transfer effects?” that depend on the environment of an atom
(tight-binding models are ignorant of the charge of the sys-
tem) and possibly more intricate manifestations?’>? of
electron-electron interactions in quasi-one-dimensional
(quasi-1D) graphene nanostructures.

For example, unlike the sheets of bulk graphene which
can be viewed as a zero-gap semiconductor,'®!" measured
ratios of currents in “on” and “off” states I,/ for room-
temperature graphene nanoribbon field-effect transistor
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(GNRFET) (Refs. 12 and 23) reveal that all of the sub-10-
nm-wide nanoribbons underlying the device were semicon-
ducting. Furthermore, some of the energy gaps extracted
from the operation of GNRFETs were closely fitted by the
density-functional theory (DFT) predictions for magnetic in-
sulating ground state of zigzag graphene nanoribbon
(ZGNR) whose band gap is inversely proportional to GNR
width. This is in contrast to noninteracting continuum
Dirac?* or tight-binding'* models of ZGNR which find only
metallic nanoribbons with no energy gap around the Fermi
level. Even larger band gaps, predicted’' by more compli-
cated (non-self-consistent) many-body GW treatment of pu-
tatively enhanced electron-electron interactions in very nar-
row ZGNRs, were not seen in these measurements.

A GNR is created by cutting a graphene sheet along two
parallel lines. The recently developed nanofabrication tech-
niques for sub-10-nm-wide GNR include direct scanning
tunneling microscopy (STM) tip drawing® and chemical
derivation.'>?* The GNRs produced by the latter technique
were used for I-V curve measurements in Refs. 12 and 23.
Their crystallographic orientations were not identified. How-
ever, the fact that the number of sp? bonds per unit length to
be cut by chemical derivation in ZGNR is less than the num-
ber of bonds in armchair GNR (AGNR) suggests that chemi-
cal derivation is more likely to produce ZGNR rather than
AGNR.

Both AGNR and ZGNR are predicted to be
semiconducting,”® where the origin of their band gap is dif-
ferent. The band gap in AGNR is the consequence of quan-
tum confinement and increased hopping integral between the
7 orbitals on the atoms around the armchair edge caused by
slight changes in atomic bonding length.?® On the other
hand, the band gap in ZGNR is due to staggered sublattice
potential arising due to nonzero spin polarization around the
zigzag edges.?®

Although not confirmed by direct probing (such as via
sophisticated spin-polarized STM techniques able to detect
magnetic moment of individual atoms?’), the possibility of
peculiar carbon-based s-p magnetism (in contrast to conven-
tional magnetism originating from d or f electrons®®) has
been known since the early studies?” of edge localized states
due to special topology? of zigzag edges. These states have
partially flat (within one-third of the 1D Brillouin zone) sub-
band, thereby generating large peak in the density of states
(DOS) at the Dirac point (i.e., the Fermi energy of undoped
graphene). This makes it possible to easily satisfy the Stoner
criterion?® for magnetic ordering when (even tiny?°) Cou-
lomb interaction is taken into account, which is the most
likely'® way to resolve the instability brought about by the
high density of states at the Fermi level in the nonmagnetic
ZGNRs. Furthermore, the study of ZGNR magnetism has
recently emerged as one of the major topics of theoretical
research on graphene, reignited in part by the DFT calcula-
tions within the local spin-density approximation (LSDA)
that have described properties of such ordering from first
principles.*19:26

In this equilibrium picture, the ground-state electronic
configuration of both infinite-*!%? and finite-length®!
ZGNRs is characterized by ferromagnetic (FM) ordering of
spins at each zigzag edge, antiparallel spin orientation be-
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tween the two edges, and antiferromagnetic (AF) coupling
between the two edges. Such compensated ferrimagnetic or-
dering within ZGNR free of defects has zero total magnetic
moment. Since opposite spin states occupy different triangu-
lar sublattices of the honeycomb lattice, the corresponding
staggered potential induces® the energy gap. The gap is in-
versely proportional to the width of the ribbons because the
potential in the middle of the ribbon decreases as the width
increases (the band gap vanishes within the room-
temperature thermal energy window when the width of GNR
reaches =80 nm).!%26

These findings have also motivated numerous proposals
for applications of ZGNR and graphene nanoislands with
zigzag edges in spintronics,*%32-3% despite the fact that no
true long-range ordering in one-dimension is expected at fi-
nite temperatures (for example, at room temperature the
range of magnetic ordering along the edge is quantified by
the spin-correlation length estimated®® to be ~1 nm). More-
over, virtually all known manifestations of edge magnetic
ordering in ZGNR have been predicted within the framework
of equilibrium theories*!*2° or linear-response transport
calculations®>3 which assume vanishingly small bias volt-
age. Except for the study of its modification, and ultimately
destruction, in idealized infinite ZGNR due to the passage of
finite ballistic current,’” very little is known on how such
magnetism will manifest in the transport properties of real-
istic devices where finite-length ZGNR is attached to metal-
lic contacts®"-33 and biased by finite voltage applied between
electrodes, as is the case of experiments on GNRFETSs re-
ported in Refs. 12 and 23.

Here we describe the fate of the band gap in two-terminal
ZGNR devices where finite-bias voltage brings them into a
nonequilibrium steady transport state. Our results predict that
passing a large enough current along ZGNR results in the
destruction of spin polarization around zigzag edges. This, in
turn, causes the collapse of magnetic-ordering-induced band
gap and hence can lead to an abrupt step in the I-V charac-
teristics of ZGNR. Nevertheless, this fundamentally non-
equilibrium effect was not observed in recent experimental
measurements'? of the GNRFET /-V characteristics. There-
fore, the second principal goal of our study is to provide
explicit prerequisites for the experimental observation of
current-flow-driven collapse of spin-polarized state in
ZGNRs and the corresponding magnetic-insulator—
nonmagnetic-metal nonequilibrium phase transition. We note
that phenomenologically similar voltage-driven highest oc-
cupied molecular orbital (HOMO)-lowest unoccupied mo-
lecular orbital (LUMO) gap collapse in a molecule attached
to two electrodes was predicted®® when these two levels
(broadened by quasiparticle scattering) hit the bias window
simultaneously. ~ The  nonequilibrium  metal-insulator
transitions®>*? have also been explored in the context of Mott
gap collapse in correlated insulators where the feedback ef-
fect of the flowing current can lead to much lower threshold
electric field than expected from the simple Zener break-
down picture.*’ These predictions, together with our findings
for ZGNRs, emphasize the possibility of highly intricate phe-
nomena in far-from-equilibrium quantum many-particle sys-
tems due to the complexity of nonequilibrium steady state in
the finite-bias regime.
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The paper is organized as follows. Section II introduces
the Hubbard model in the mean-field approximation as a
two-parameter fit to ab initio LSDA. In Sec. III we describe
the Newton-Raphson method used to accelerate the conver-
gence of self-consistent spin-resolved electron density in the
nonequilibrium state. The minimal-basis set and the Hubbard
model make the relatively expensive Newton-Raphson
method much simpler and very efficient when combining
with the nonequilibrium Green’s function (NEGF) tech-
niques. Section IV considers the influence of finite tempera-
ture and edge vacancy type of disorder on the spin polariza-
tion of ZGNR in equilibrium. In Sec. V, we present our
principal results: (i) the threshold voltage required to destroy
the edge spin polarization increases with the ZGNR length,
reaching =0.4 and =~0.8 V for ZGNRs of lengths =7 and
=13 nm, respectively (Figs. 6 and 9); (ii) since larger
threshold voltages and higher turn-on current may destroy
ZGNR, we propose that the length of ZGNR intended for the
band gap collapse measurements and, therefore, /-V curve
probing of the underlying magnetic ordering should be on
the order of ~10 nm. We also discuss in Sec. V the influ-
ence of the contact quality on the observability of predicted
features of the I-V characteristics of ZGNR sandwiched be-
tween two metallic electrodes. We conclude in Sec. VI while
providing technical details of the self-consistent electron-
density calculations in the nonequilibrium state in Appendix.

II. ZGNR EFFECTIVE MINIMAL-BASIS-SET SELF-
CONSISTENT HAMILTONIAN AS A TWO-PARAMETER
FIT TO LSDA

The texture of magnetic ordering in confined graphene
nanostructures, with at least few carbon atoms*! forming a
zigzag edge, has been described quantitatively either by us-
ing the mean-field approximation of the Hubbard (MFAH)
model with single 7-orbital per site’>?*34! or DFT within
different approximation schemes for its exchange-correlation
density functional [such as LSDA,?® generalized gradient ap-
proximation (GGA),’ or hybrid B3LYP (Ref. 19)]. Although
DFT goes beyond strictly on-site treatment of the electron-
electron interaction U and the nearest-neighbor hopping ¢ in
the MFAH model, the parameters of the latter,*
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can be estimated by fitting!? the spin-unrestricted DFT band
structure near the Fermi energy Erp=0 with that obtained
from MFAH Hamiltonian (1) defined on N,-ZGNR honey-
comb lattice. The values for ¢ and U estimated in this fashion
slightly depend on the choice of the exchange-correlation
functional employed within DFT approximation schemes.'”
In Eq. (1), operator é; (¢;) creates (annihilates) an electron in
the 7r orbital located at site i=(i,,i,) of the honeycomb lat-
tice. The third term, which is zero for charge neutral systems,
accounts for the shift of the on-site energies due to Coulomb
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interaction with the applied electric fields or uncompensated
charges in the system—the coefficients v; are to be computed
self-consistently in a standard DFT-like fashion, as elabo-
rated in Sec. III

As customary,?® the width of N.-ZGNR lattice is mea-
sured using the number N, of zigzag longitudinal chains. The
number of atoms N:, comprising a single longitudinal zigzag
measures its length. In the units of graphene lattice constant
a=2.46 A, the average width of ZGNR is W= a\3(N
—1)/2 and its length is L=a(N;-1)/2.

The spin-resolved (o= 1, along the z axis orthogonal to
ZGNR plane) electron density on carbon atom at site i is
given by the statistical expectation value,

Njg = <AT ¢ > (2)
so that particle density at the same site is the sum
ni=niT+nil. (3)

These quantities have to be computed via the self-consistent
loop?° either from the eigenstates of equilibrium systems® or
from NEGFs (Sec. IIT) when finite-length ZGNR is attached
to electrodes®! and brought into nonequilibrium state by the
applied bias voltage. Once the self-consistency criterion is
satisfied, the spatial distribution of magnetization density
within ZGNR is obtained from

m; = g,UvBsf = ,U«B(”n - nil) > (4)

where S is the spin density and ujp is the Bohr magneton.

We chose to combine local-orbital basis Hamiltonian (1)
with NEGF because it allows us to substantially accelerate
self-consistent calculations in the nonequilibrium current-
carrying state (as discussed in Sec. III). Although Eq. (1) is
typically obtained through mean-field decoupling scheme*?
by starting from the full many-body Hubbard model for lat-
tice fermions, it can also be justified with the framework of
LSDA. Furthermore, the latter provides simple and clear ex-
planation of the expression for the total energy, which will be
required for thermodynamic analysis of Sec. I'V.

By using the spin-restricted self-consistent environment-
dependent tight-binding (SC-EDTB) model, which is specifi-
cally tailored to simulate eigenvalue spectra, electron densi-
ties and Coulomb potential distributions for carbon-hydrogen
systems,*** we can establish the relationship between
Hamiltonian (1) and its LSDA counterpart,*

A2 ’
2 |y 2J 3 l’l(l‘)
HY =——+e dr'——+
LSDA 'm |l'—l‘,|

+ Vi ([nl;r) + AV, (5)

Vpp(r) + Vext(r)

= Vi([n',n'Lir) = Vie([n];x). (6)

The first five terms in this one-electron Hamiltonian are
kinetic-energy operator, classical Hartree potential, pseudo-
potential associated with core electrons, external potential,
and spin-restricted part of exchange-correlation potential.
They do not depend on the spin polarization and can be
accounted by the SC-EDTB model. The EDTB aspect*® of
the model assumes that hopping matrix elements of the tight-
binding Hamiltonian depend not only on the distance be-
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tween the two atoms on which the basis functions are cen-
tered but also on the arrangement of neighboring atoms (i.e.,
it is analogous to a DFT scheme that accounts for three- and
four-center integrals and with atomic orbitals adjusted to
atomic environment). The SC-EDTB model adds parameters
to this non-self-consistent EDTB part in order to describe
hydrocarbon bonds while taking into account the
self-consistent® charge transfer.**** The last term AVY, in
Eq. (5) is different for T and | spins, where the spin-
dependent V7 ([n!,n!];r) exchange-correlation potential in
LSDA is®

d
Vgc([”T,nl] ,l') = E[(HT + nl)exc(nT’ni)ﬂnu_:nu_(r) (7)
g

The exchange-correlation energy per particle ey (n,n)) is
extracted® from an electron gas with uniform densities ni,
Let us compute the on-site 7-orbital matrix element for
AV?.. We borrow the orbital parameters from SC-EDTB, par-

ticularly

W.(r,0) = ae="r cos 0, (8)

which is one of the four localized orbitals per carbon atom
comprising the basis set. Here a,=1.6085 A~"2 and a is the
normalization factor. By defining local relative spin polariza-
tion

n'(r) = n(r)
n'(r) +nt(r)’
and by assuming that within the orbital range { does not

depend on r, the spin-resolved electron densities for 7 or-
bital are

{(r)= 9)

nf<(r) = \Irg%g nx(r) = ‘Pz%g (10)

Equations (7) and (8) determine the matrix element
(PIIAVZ|W?) as a function of { (WI=W_x,, where x, is the
spinor part of the wave function).

Similarly, we can obtain the spin-dependent contribution
to on-site matrix elements of MFAH Hamiltonian (1),

U U
AHYpauld]= + Enifz + EL (11)

which is a linear function of {. As we demonstrate below,
even in the strong electric field the relative change in the
total 7r-orbital electron population does not exceed 1%. This
means that n; in Eq. (11) can be assumed equal to unity.
Figure 1 plots the spin-dependent part of the on-site ma-
trix elements of LSDA and MFAH Hamiltonians. Since in
ZGNR systems the polarization { varies within the interval
[-0.3,+0.3], we find a good fit between matrix elements of
MFAH and LSDA Hamiltonians in this range, thereby justi-
fying the usage of Eq. (1) instead of more complicated Eq.
(5). The fit also sets the parameters r=U=2.7 eV for the
MFAH model.* The right inset in Fig. 1 plots the SC-EDTB
contribution of sp? carbon orbitals to the DOS for a typical
single-layer graphene system composed of GNRs of different
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FIG. 1. (Color online) The spin-dependent contribution to the
on-site matrix elements of LSDA and MFAH Hamiltonians as the
function of relative spin polarization {. The dashed red line plots the
expectation value <W1\AV£C|‘I’I) for Perdew-Zunger parametrization
(Ref. 45) and SC-EDTB orbital parameters, where electron-density
contribution from other sp? orbitals to AVI(C is neglected. The solid
blue line plots spin-dependent contribution HII/[F aplL¢] to the on-site
matrix element of MFAH Hamiltonian with U=2.7 eV. The two
vertical lines indicate variation range for the spin-polarization pa-
rameter ¢ within ZGNR. The right inset plots the logarithm of SC-
EDTB sp? DOS as a function of energy (EF=0 is the Fermi level).
The left inset plots spin-dependent contribution E (dashed red) to
the total energy [Eq. (12)] in LSDA and -UZn;n;; (solid blue)
contribution to the total energy [Eq. (13)] in MFAH model as a
function of .

types and widths. As follows from the inset, the orbitals
other than p, do not have any contribution to the DOS within
[-4 eV, +3 eV]interval around the Fermi energy. This sug-
gests that usage of single 7 orbital per honeycomb lattice site
in Hamiltonian (1) should be sufficient in the cases when the
applied bias voltage does not exceed =2 V.

From this analysis, as well as from the mappings>!® of
DFT calculations to simpler MFAH model or the fact that
DFT results obey the Lieb theorem*” for the exact ground
state of the Hubbard model on charge neutral bipartite lat-
tices, we can conclude that second-neighbor hopping and
intersite Coulomb repulsion (present in the DFT calcula-
tions) do not modify the relation between lattice imbalance
and total spin of the ground state warranted for the Hubbard
model for which these couplings are absent. Thus, given that
the replacement of LSDA by MFAH Hamiltonian is reason-
ably justified, we proceed to derive expression for the total
energy as a function of ¢ based on the solution of Eq. (1).
The total energy within the LSDA framework is

N,

atoms ZZZ
ECpaln. =2 floi- wei+ X~
LspAL i e i<j |Ri_Rj|
2 ’
+e_f f rity ) | i g
2 [r—r’|
(12a)
End= 2 | @m,(m)Vi(n:r)
o=1,]
+fd3rn(r)exc[nT(r),nl(r)]. (12b)

Here &; are the eigenvalues of Eq. (5), f(e) is the Fermi
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function, w is the chemical potential [chosen to satisfy
Jd*rn(r)=N, where N is the total number of electrons], Z; are
atomic core charges, and R; are nuclear coordinates. The
self-consistent computation of spin and particle densities
shows that transition between the spin-polarized and the
spin-restricted solutions does not result in any noticeable
change in the total electron density. We also assume the same
atomic coordinates for the entire range of interest for ¢.
Therefore, the second and the third terms in Eq. (12a) do not
depend on spin polarization. If we assume that { is uniform,
i.e., independent of r within single orbital range, then by

substituting the electron densities [Eq. (10)] into E[n, ] we

obtain nearly quadratic dependence of E on {, as shown in
the left inset (dashed line) of Fig. 1.

The expression for the total energy within the MFAH
model is given by?’

Enteanln. = Ef(si — me;— UZ Niph| . (13)

The second term in Eq. (13) is plotted (solid line) as a func-
tion of { in the left inset of Fig. 1 and represents approxima-

tion for E in Eq. (12) plotted in the same inset (dashed line).
As demonstrated by Fig. 1, the LSDA matrix element aver-
aged over the range { € [-0.3,0.3] is positive due to slightly
superlinear dependence on ¢. At the same time the average of
the Hubbard matrix element over the same interval is exactly
zero due to its linear dependence on {. That is, on average
MFAH model underestimates the on-site Hamiltonian matrix

elements, but it overestimates E. The partial error compen-
sation in Eq. (13) makes U=2.7 eV a reasonable choice for
approximation of both the LSDA single-particle energies and
the total energy by a simpler MFAH model.

Energy expression (13) also provides a transparent expla-
nation for the origin of magnetic ordering in ZGNRs. The
value of {=-1 in Fig. 1 corresponds to spin-] electron sur-
rounded by spin-| electron density, while {=1 is associated
with spin-T electron surrounded by spin-T electron density.
Therefore, the Hamiltonian matrix elements favor the spin
polarization. At the same time, the second term in Eq. (13)
favors the non-spin-polarized solution (see left inset of Fig.
1), so that the competition between this term proportional to
£* and the band energy proportional to ¢ determines the ap-
pearance of nonzero spin polarization.

III. NEGF WITH ACCELERATED CONVERGENCE SELF-
CONSISTENT ALGORITHM

We employ the NEGF formalism*® for the computation of
nonequilibrium spin-resolved electron densities by starting
from MFAH Hamiltonian (1). Assuming a two-terminal sys-
tem, composed of finite-size ZGNR attached via semi-
infinite ideal leads to the left (L) and right (R) macroscopic
reservoirs where electrons thermalize to be characterized by
the electrochemical potentials ;> up, the nonequilibrium
electron density

PHYSICAL REVIEW B 79, 205430 (2009)

n = diag[D], (14)

in the phase-coherent approximation (i.e., in the absence of
dephasing and inelastic processes*’) is obtained from the fol-
lowing density matrix:

D=- }fo dE Im[G(E) [f(E - jug)

-0

1 J - dE Re{G(E)Im[%,(E)]G'(E)}

TJ o

X[f(E = pr) = fIE = pp)]. (15)

Here G is the retarded Green’s function matrix and diag[- -]
returns vector composed of the diagonal elements of its ar-
gument. Because Eq. (1) assumes zero overlap between the
orbitals, only diagonal elements of D contribute to electron
density in Eq. (14). The retarded self-energy matrix 3, is
introduced by the “interaction” with the left lead—it deter-
mines escape rates of electrons into the left reservoir.*® The
density matrix in Eq. (15) is split into equilibrium (first term)
and nonequilibrium (second term) contributions,*>* taking
into account that left-lead states are filled up to u; and right-
lead states are filled up to energy up. Integration over energy
is performed using the pole summation algorithm.>*

For a small difference between u; and ug, the self-
consistency can be achieved by applying the Broyden con-
vergence acceleration method,?>>> which has two major
advantages. First, the Broyden method is compatible with the
recursive algorithm for construction of the Green’s functions
and self-energies, where recursion is extended to allow for
the computation of local quantities inside the sample rather
than usual transmission function and conductance deter-
mined by it.5’° The simplest version of such algorithms
starts by partitioning the quasilinear system into slices (de-
scribed by a much smaller Hamiltonian matrix) in a such
way that only the coupling between the nearest-neighbor
slices is present. Then, the recursive algorithm is applied to
propagate the self-energies from the contacts and to build the
Green’s functions for each slice. The nonequilibrium electron
density for each slice is derived locally from the Green’s
functions and the self-energies for the given slice. The com-
putation time scales linearly with the number of slices and
cubically with the size of the matrices (Hamiltonian, Green’s
functions, and self-energies) associated with a single slice.
Second, the Broyden method adds O(N) extra operations and
hence does not slow down the single iteration. However, the
reduction in the iteration number achieved by the Broyden
method is appreciable. For equilibrium problems considered
in Sec. IV the number of iterations required to achieve 107'°
maximum difference between the input and output electron
densities using the Broyden method is about 30, while the
scalar charge mixing requires several hundreds of
iterations.>

The Broyden method works well when the correlation be-
tween the electron density and the potential is local, i.e.,
when the local potential distortion results in a local self-
consistent density change. Conversely, in the case of nonlo-
cal correlations the Broyden method performance rapidly de-
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teriorates. The nonequilibrium electron density in the
coherent ballistic approximation constitutes the perfect ex-
ample when the Broyden method fails. The reason for this is
that electron-potential correlations become completely non-
local: the change in the potential at one contact can shut off
the electron flux through the entire system and cause the
system-wide electron-density redistribution. The “brute-
force” alternative to the Broyden algorithm is the Newton-
Raphson method, which slows down each iteration by one
order of magnitude but reduces the number of iterations to
less than a dozen and guarantees the convergence toward the
self-consistent solution.

Because the convergence under nonequilibrium condi-
tions constitutes the major computational problem, we
present the details of the NEGF-adapted Newton-Raphson
method employed in our study. The first-order Taylor expan-
sion for the retarded Green’s function (X =3, +3),

G(E)=[E+H+X]", (16)
with respect to the Hamiltonian variation 6H is
OG(E)=[E-(H+oH)-3]"'-[E-H-X]"'=G-6H-G.

(17)

At this point the minimal-basis set of the MFAH model
comes into play—according to Eq. (1) only diagonal matrix
elements are affected by the electron-density distribution. In
the following, SH denotes the change in the Hamiltonian due
to a small variation in the electron density, which means that
oH is a diagonal matrix. Vector oh denotes the diagonal
elements of SH. Using the symmetry of the retarded Green’s
function matrix associated with the real Hamiltonian, the
variation in the electron density on with respect to dh can be
written as (all quantities depend on energy E which is omit-
ted for brevity)

n=A - 6h, (18a)
A=- lfmd}s Im[G ® GIf(E - ug)
- % f - dERe{G' ® (G -Im[¥,]- G")}
X[A(E = pr) = fIE = pg)]. (18b)

Here the symbol ® between matrices denotes element-wise
product of two matrices, so that the element of, e.g., G® G is
(qu)2. The computational complexity of the integrand in Eq.
(18) is O(Ng) per energy point, where Ng is the size of
matrix G.

In the spin-unrestricted case the electron-density vector is
composed of n; and n| subvectors. Therefore, we can rewrite
Eq. (18) as a matrix equation,

on; Al 0 oh,
= NE . (19)
Matrices A” are computed using Eq. (18b) with Green’s

function matrices G?? plugged in. The matrices G are ob-
tained by inverting via Eq. (16) the corresponding diagonal
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block H7 (for spin-o electrons) of the matrix representation
of Hamiltonian (1). We assume that there is no spin polar-
ization in the leads, so that the self-energies 3, and 3 are
the same for both spin polarizations.

In the framework of MFAH model, the on-site potential
variation vector is the linear function of the density variation

vector,

(o) =loren “o ")) oo
Here Q is the Coulomb interaction matrix computed for
mr-orbital wave functions with SC-EDTB parameters in Eq.
(8) using standard DFT approach. The dot-product of the ith
row of matrix Q and uncompensated 7r-orbital electron den-
sity (n—1) plus the potential shift due to the external electric

field equals the coefficient v; in Eq. (1). The identity matrix I
has the same dimensions as Q and H?. By defining matrix B

as
Al 0 + Ul
B- ( ) . ( e Q ) (1)
0 A') \Q+Uur Q
we can relate, in the first-order approximation, the response

of the output spin-resolved electron density with respect to a
small variation in the input density,

_ on; B on, _
Ongy = =B =B-6n,. (22
Ol Ol
|/ out n /i,

If n;, is the input density of the self-consistent loop and n,,
is the corresponding output density, the self-consistent solu-
tion can be written as

Ny, + 5nout =ng,+B- 5nin =y, + 5nin' (23)

Equation (23) allows us to compute &n;, for the next self-
consistent iteration from n;, and n,, in the current iteration
by solving the system of linear equations

(IB - B) : 5nin = Doy — Dy (24)

Here Iy is the identity matrix of the same dimension as ma-
trix B.

The main computational disadvantage of the Newton-
Raphson method is that Eq. (18b) uses the full retarded
Green’s function matrix G rather than its diagonal part as
does the Broyden method. This prohibits the usage of the
recursive Green’s function algorithm and requires to apply
the Newton-Raphson scheme to matrices containing the in-
formation about the entire system rather than to much
smaller matrices containing the information about its slices.
Given that the second term in Eq. (18b) must be evaluated
for about 1000 different energy poles, we are limited to sys-
tems composed of relatively small number of carbon
atoms—the largest out-of-equilibrium ZGNR-based two-
terminal device treated in Sec. V contains about 1000 atoms.

IV. EQUILIBRIUM THERMODYNAMICS OF ZGNR

A. Finite-length ideal ZGNR

With few exceptions,'333% theoretical investigations of

magnetic ordering in ZGNRs have concentrated largely on
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FIG. 2. (Color online) Bottom panel: self-consistently computed
equilibrium spin density within finite-length 6-ZGNR attached to
two semi-infinite square lattice leads at 7=293 K. Upper panel: the
initial random spin density used to obtain the solution in the bottom
panel. Thick red and thin blue circles denote spin-T and spin-|
densities, respectively, with the circle radius being proportional to
spin density on the corresponding carbon atom.

all-graphitic structures (with addition of different types of
edge carbon atom passivation'?). On the other hand, in ex-
periments, the ultimate electronic contacts are metallic, as
illustrated by sub-10-nm-wide GNRFETs with Pd source and
drain electrodes.'>?3 We first analyze equilibrium magnetic
properties of ZGNRs of finite length, with no defects and
bounded by perfectly formed zigzag edge, which are at-
tached to metallic leads modeled as semi-infinite square lat-
tice wires. The device setup is illustrated in Fig. 2. We as-
sume that on the square tight-binding lattice of the leads only
the nearest-neighbor hopping 7,=r=2.7 eV is different from
zero, and the coupling of the leads to central ZGNR sample
is described by the same hopping parameter ¢.=t.

At the Fermi energy (Er=0) of undoped graphene, such
leads have maximum number of open transverse propagating
modes, which can penetrate into ZGNR as evanescent
modes.3"® In fact, at clean armchair left and right interfaces
of ZGNR mode mixing occur, thereby effectively acting as
disorder whose effect on lead-ZGNR contact transparency
further depends on weather the lead is “lattice-matched” or
“lattice-unmatched” to the honeycomb lattice of ZGNR.%
The leads shown in Fig. 2 fall in the category of lattice-
unmatched ones,?! as discussed in more detail in Sec. V C.

The two-terminal device in Fig. 2 is macroscopically in-
homogeneous, so that even in equilibrium it is more efficient
to use NEGF (with semi-infinite leads accounted through
self-energies discussed in Sec. III) to obtain the texture of its
spin polarization?! rather than trying to match the eigenstates
of the leads to the eigenstates of ZGNR. If one starts with the
random spin polarization illustrated in the upper panel of
Fig. 2, the self-consistent solution converges to the magneti-
zation density forming a pattern of finite-length segments
whose spins are oriented in the same direction. For example,
the lower panel of Fig. 2 displays one possible self-
consistent solution originating from the initial spin density in
the upper panel. The magnetization texture within ZGNR
lowers the total energy but at the same time it decreases the
entropy by aligning electron spins. Thus, at finite tempera-
ture one can expect that spin density along zigzag edges
would be represented by finite-length segments of a given
polarization, as exemplified by the lower panel in Fig. 2.

To estimate the length of a uniformly spin-polarized seg-
ment, we compute the free energy F for ZGNRs of finite
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length and find its minimum with respect to the number of
such segments. This problem can be formulated as follows.
Suppose there is continuous L unit-cell-long zigzag edge,
which can have either uniform or fragmented spin polariza-
tion. The length [, of the shortest possible fragment for any
given value of Hubbard U is known from self-consistent cal-
culations. Obviously, the edge cannot contain more than L/
fragments. Every boundary between the two fragments adds
additional energy £, to the total energy of the edge, which is
also determined from the self-consistent loop. If the number
of segments with uniform spin polarization is n,<<L/[,, there
are “‘extra” L—ngl; edge carbon atoms that can be distributed
between n, segments. Thus, this problem maps onto a ques-
tion: “In how many ways can we distribute L—n/, indistin-
guishable spheres among n, distinct boxes?” Its answer is
simply

(L-nd,+n,—1)!
(L-ngd) ! (n,—1)!"

Wng,l,L) = (25)
By applying the Stirling approximation for large factorials,
Eq. (25) can be transformed into

1
W(n.wl.wL) = /_[L + I’l‘(l - ly) - 1:|nx(1—ls)+L—1/2
N2

X (ns _ 1) 1/2—11S(L _ nsls)nsls—L—l/Z’ (26)

so that the entropy related to the spin arrangement along the
edges is S=kg In[W(n,,l,L)]. The free energy is then given
by

F(nx,lx, T’ETl) = (ns - I)ETL - kBT ln[W(ns,ls,L)]. (27)

The number of segments n, in ZGNR which is L unit-cell
long at equilibrium is obtained from the condition

Ik _

ong - (28)

We use the self-consistent calculations, similar to the one
displayed in Fig. 2 but for longer ZGNRs, to extract the
values for /; and E; . The average number of atoms substan-
tially affected by the transition between the two zigzag edge
segments of opposite spin polarization is =4, as illustrated
by the lower panel in Fig. 2. The energy of the “boundary”
between two oppositely spin-polarized edge segments is
computed from

(29)

The value of E; slightly depends on the ZGNR width and
spin ordering type at low temperatures, which can be'® (i)
antiferromagnetic (AF), when spin moments on one edge are
antialigned to the spin moments on the opposite edge, or (ii)
ferromagnetic (FM), when spin moments on carbon atoms on
both edges point in the same direction. Both the AF and FM
configurations of magnetic moments have total energy lower
than the nonmagnetic state. Moreover, the AF configuration
is the ground state in narrow ribbons, while the energy dif-
ference between the AF and FM states diminishes with in-
creasing ZGNR width.!"” Here E,, is the total energy of
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FIG. 3. (Color online) Left panel: free energy of the zigzag edge
of length N”= 101 (50 one-dimensional unit cells) as a function of
the number of segments with uniform spin polarization at two dif-
ferent temperatures. The minimum at n,=~2.2 indicates that at T
=273 K the ZGNR edge is partitioned into two segments, while the
absence of the minimum at 7=250 K means that the number of
partitions is less than 1 so that the whole edge is uniformly spin
polarized. Right panel: the average length of a uniformly spin-
polarized segment as a function of the energy E;| associated with
the boundary between two segments of opposite spin polarization.

ZGNR with arbitrary fragmented sections of uniform spin
polarization along the zigzag edge, E?m is the total energy of
the same ZGNR in the AF ground state, and N, is the number
of transitions between T and | polarizations on both edges of
ZGNR.

The left panel of Fig. 3 plots F vs the number of uni-
formly spin-polarized segments n; for ZGNR of length N7
=101 assuming /;=4 and E; =80 meV [E,  can be esti-
mated from the energy gap of ZGNR in magnetic insulating
state (see Fig. 5)]. The minimum for the free energy at T
=273 K indicates that the edges of ZGNR will be most
likely partitioned into two uniformly spin-polarized seg-
ments but with antialigned spins between the two segments.
On the other hand, at 7=250 K the free energy does not
have minimum, meaning that the whole zigzag edge is now
uniformly spin polarized and the corresponding ZGNR is in
the AF configuration. In the limiting case of an infinitely
long ZGNR (L— %, n;—o0, and L/n,=l[,,), Eq. (28) simpli-
fies to

E Ly + 1)1
exp(_ ﬁ) — %’ (30)
kT L,

where /,, is the average number of carbon edge atoms in the
segment with uniform spin polarization. The right panel in
Fig. 3 plots /,, as a function of energy E;. For E
=80 meV, this length is /,,=~28 at T=273 K, while it in-
creases by a factor of 2 at 7=250 K.

B. Finite-length ZGNR with disordered edges

Since edge imperfections are expected to disrupt®? the
magnetic ordering within ZGNRs, we plot in Fig. 4 the self-
consistent solution of NEGF-MFAH equations for ZGNR
with vacancies along one of its zigzag edges. The removal of
a single zigzag chain fragment from ZGNR edge results in
almost complete loss of correlations between magnetic mo-
ments of edge atoms belonging to different chains. This
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FIG. 4. (Color online) Equilibrium spin density within finite-
length 8-ZGNR, whose upper zigzag edge is eroded, at 7=293 K.
The ZGNR is attached to two semi-infinite square lattice leads of
the same type as in Fig. 2. The dangling bonds of edge atoms are
assumed to be passivated with hydrogen atoms (not show explic-
itly). The circle radius is proportional to spin polarization at a given
atomic site. Thick red circles mark spin-| density and thin blue
circles are for spin-| density.

nt-nl +0.25

-0.25

means that the length of a segment of edge carbon atoms
carrying magnetic moments aligned in the same direction is
determined by either topological disorder or thermodynamic
disorder, whichever has the smaller characteristic length. The
effect of edge defects (vacancies) and impurities (substitu-
tional dopants) on the robustness of magnetic ordering in
ZGNRs was studied in more detail via DFT calculations in
Ref. 61.

V. ZGNR IN NONEQUILIBRIUM STEADY STATE
A. Infinite ideal ZGNR

As it has been previously suggested,’” passing a suffi-
ciently large current along infinitely long translationally in-
variant ZGNR can destroy completely its edge magnetic or-
dering. To estimate the source-drain bias voltage,

eVas= pp — Mgs (31)

necessary to wash out the spin density, two separate Fermi
levels u; and ug (for the left- and right-moving electrons,
respectively) have to be used. Since this system is infinite
and homogeneous, the nonequilibrium spin-resolved electron
density on carbon atom at site i can be computed simply by
using its propagating Bloch modes,

1
Nig = Ef dkz |C?:r(k)|2[f(8m,k - ML) +f(8m,k - MR)]?

(32)

where Cj' (k) is the value of the Bloch amplitude obtained by
solving Eq. (1) and the sum over m goes over all subbands.
The values of w; and g are determined from the charge
neutrality condition

E_ (i +n5)) = Nyc, (33)

where Ny is the total number of electrons in the unit cell of
ZGNR.
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FIG. 5. (Color online) [(a) and (d)] Total nonequilibrium energy
and [(b), (c), (e), and (f)] band structure of infinitely long ideal
[(a)-(c)] 6-ZGNR and [(d)—(f)] 32-ZGNR as the function of applied
bias voltage u; —ugp=eV,,. Panel (a) plots the total energy per unit
cell of 6-ZGNR for magnetically ordered AF configuration (solid
red) and nonmagnetic state (dashed blue). The threshold voltage at
which spin-polarized solution becomes unstable is labeled by V,.
For V>V, the only self-consistent solution available is the non-
polarized metallic state. The threshold voltage decreases for wider
32-ZGNR in panel (d). Panels (b), (c), (e), and (f) plot the band
structure for the bias voltage slightly below (V,?) and slightly
above (V:'O) the threshold voltage. Only two subbands in the vicin-
ity of the Fermi level are shown for clarity, while other subbands
experience only minor changes when the transition between spin-
polarized and nonpolarized states of ZGNR takes place.

Figure 5 depicts the dependence of the total energy and
band structure of 6-ZGNR and 32-ZGNR with respect to the
difference between the Fermi levels of the left- and right-
moving electrons. Panels (b), (c), (e), and (f) pertain to the
nonequilibrium case but are similar to equilibrium band
structure and can be used to demonstrate the difference be-
tween magnetically ordered AF configuration and nonmag-
netic state of ZGNRs. The spin polarization lowers the
Hamiltonian eigenenergies, which results in the downshift of
the highest filled band in panels (b) and (e) with respect to
nonpolarized band structures plotted in panels (c) and (f).
Note that both in equilibrium'® and nonequilibrium studied
here, magnetic-ordering effects on higher subbands are neg-
ligible, so that Fig. 5 shows only the two subbands around
the Fermi energy corresponding to spin-polarized [Figs. 5(b)
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and 5(e)] or nonpolarized [Figs. 5(c) and 5(f)] edge states.

When the separation between u; and wg exceeds the cer-
tain threshold value, the abrupt change from spin-polarized
AF configuration to nonpolarized state occurs, as demon-
strated by Figs. 5(a) and 5(d). The steplike transition can be
explained as follows. Suppose the strip is in the AF spin-
polarized state and u; > ug. As the bias voltage is increased,
the left-moving electrons with majority-spin orientation ly-
ing above uy are depopulated (i.e., exit through the left con-
tact without being replaced by electrons from the right con-
tact) and the right-traveling states with minority-spin
orientation below w; are populated. This reduces the spin
density and, hence, decreases the energy gap in the subband
structure plotted in Figs. 5(b) and 5(e). When the device has
reached a steady state, the result of these processes can be
viewed as an effective repopulation of the electronic states in
ZGNR, where electrons are “excited” from the valence band
into the conduction band, with each such “excitation” de-
populating a state in the valence band and populating a cor-
responding state with opposite spin in the conduction band.
The reduced spin polarization decreases the band gap,
thereby facilitating excitations that depopulate more left-
traveling states with majority-spin orientation lying above g
and populate more right-traveling states with minority-spin
orientation lying below w;. When separation between w; and
Mg exceeds threshold of =0.4 eV, this feedback mechanism
becomes positive’” and the spin-polarized insulating state
collapses to nonpolarized metallic solution whose subband
structure is shown in Figs. 5(c) and 5(f).

B. Finite-length ZGNR attached to multiple-linear-chain leads

To simulate metallic contacts on the top of ZGNR, similar
to Pd contacts of experimental devices in Ref. 12, we assume
that every carbon atom in the contact regions (shaded with
light yellow color in Fig. 7) is connected to a linear tight-
binding chain with hopping parameter between the chain at-
oms t,,=2.7 eV. Thus, the metallic electrodes of a two-
terminal device are simulated with a large number of
noninteracting semi-infinite linear chains. The choice for
such model is stipulated by the metallic character of linear
chains and is a convenient way to simulate a top contact
connected to a large number of atoms within ZGNR. Two
different hopping parameters between the chains and the car-
bon atoms are employed: 7,.=2.7 eV simulates highly trans-
parent contact, while ¢#,=0.27 eV is chosen to correspond to
the contact resistance of =60 k() measured for GNRFET
devices in Ref. 12. Also, the width of ~2 nm of all ZGNRs
we examine below is selected to fall in the range of experi-
mentally fabricated sub-10-nm-wide GNRs,!? all of which
have exhibited semiconducting behavior in the I-V character-
istic measurements. Note that all-semiconducting nature of
ultranarrow GNRs appears to be a key advantage over
single-wall carbon nanotubes (which in the similar diameter
range are typically a mixture of semiconducting and metallic
ones?®) as candidates for the envisaged carbon
nanoelectronics.”8

For devices described by an effective single-particle
Hamiltonian, such as Eq. (1), with mean-field treatment of
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interactions and no dephasing processes the current at finite-
bias voltage can be computed from the NEGF-based
formula,*®-30-53

1(Vy) = %f dET(E.,V)[f(E - pr) = f(E = pg) ],

—o0

(34)
which integrates the self-consistent transmission function

T(E, V) = T{UR(E + eV, /2)GI [ (E - ¢V,/2)G '}
(35)

for electrons injected at energy E to propagate from the left
to the right electrode under the source-drain applied bias
voltage p; —ur=eV,. The energy window for the integral in
Eq. (34) is defined by the difference of Fermi functions
SE—pu;)—f(E—pug) of macroscopic reservoirs into which
semi-infinite leads terminate. This “window,” at room tem-
perature 7=293 K and for selected bias voltage V, is
shown explicitly (thin black solid line) in Figs. 6, 9, and 13
for three different types of ZGNR devices, where it encloses
the portion of T(E, V) vs E curve which is integrated to get
the current (V). The matrix

T (E) = i[2, z(E) - 2} p(E)] (36)

accounts for the level broadening due to the coupling to the
leads.

In addition to self-consistent computation of spin-resolved
electron density, which is required both in equilibrium and
nonequilibrium, evaluation of Eq. (34) requires computing
also the self-consistently developed electric potential
profile>? due to the passage of current. The profile enters into
MFAH Hamiltonian (1) through v; term. This ensures gauge
invariance of /-V characteristics, i.e., its invariance with re-
spect to the shift of electric potential everywhere by a
constant.'> The technical issues in converging nonequilib-
rium charge densities through self-consistent loop are dis-
cussed in Appendix.

The I-V characteristics of two-terminal ZGNR devices
with both transparent and =60 k() resistive contacts are
shown in Fig. 6. In both devices, at around bias voltage V,
~(.44 V, current jumps abruptly by one order of magni-
tude. To understand the origin of the jump, we plot the trans-
mission function 7T(E,V,) in Fig. 6 just before [panels (b)
and (e)] and just after [panels (c) and (f)] the discontinuity
has occurred. These plots reveal insulating state on the low-
voltage side V, <V, where transmission probability is ex-
ponentially suppressed within the gap region. On the other
hand, finite transmission probability appears in the metallic
state on the high-voltage side V ;> V, of such voltage-driven
nonequilibrium phase transition.3>#*%2 When the transpar-
ency of the contacts is reduced in Figs. 6(e) and 6(f), the
transmission function acquires sharp peaks due to quantum
interference effects in the absence of dephasing (e.g., the
amplitude of the resonant mode builds up when electron
waves leaking from the quasibound state in the ZGNR chan-
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FIG. 6. (Color online) [(a) and (d)] The I-V characteristics and
[(b), (c), (e), and (f)] transmission function for 11-ZGNR (width
~2.1 nm; length =6.6 nm) two-terminal device depicted in Fig. 7.
Left column panels are for perfect coupling 7.=2.7 eV between
ZGNR and multiple-linear-chain leads, while right column panels
use 7.=0.27 eV which sets the contact resistance to =60 k() (as in
experiments of Ref. 12). In panels (a) and (d), dashed red line
denotes I-V curves in the AF state of ZGNR, while solid blue line
denotes I-V curves for the same ZGNR after its magnetic ordering
is destroyed by the applied bias voltage. Thick solid red curve in
panels (b) and (e) is transmission function at point B in panel (a) or
point E in panel (d), respectively, for nonequilibrium AF spin con-
figuration illustrated in Fig. 7. Thick solid blue curve in panels (c)
and (f) is transmission function at point C in panel (a) or point F in
panel (d), respectively, for nonmagnetic metallic state. In panels (b),
(¢), (e), and (f), thin solid black line illustrates energy window
S(E=eV,/2)—f(E+eVy/2) over which T(E,V,) is integrated to
get the current at corresponding points B, C, E, and F in panels (a)
and (d), while thin dashed green line and thin solid red line are
transmission functions of infinitely long ideal 11-ZGNR at zero bias
V,4=0 and threshold bias Vdssz_O (defined in the same way as in
Fig. 5), respectively.

nel cancel the incident waves and enhance the transmitted
ones), which is akin to resonant transmission through double
barrier structures.*®

The spin density corresponding to point B in Fig. 6 is
plotted in Fig. 7(a), demonstrating that insulating state for
V<V, is magnetically ordered in a similar fashion as in
equilibrium. The AF configuration in nonequilibrium shows
that a small amount of spin polarization is present in the
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FIG. 7. (Color online) Spatial profile of spin [panel (a)] and
charge [panels (b) and (c)] density within 11-ZGNR (width
~2.1 nm; length =~6.6 nm) two-terminal device at the threshold
voltage V,;=0.44 V and for perfect coupling (7.=2.7 eV) to
multiple-linear-chain leads attached in yellow-shaded contact re-
gions. In panel (a), the maximum difference between spin-1 and
spin-| electron density is n;;—n; =0.24. The electron-density pro-
file in panel (b) corresponds to spatial spin distribution in panel (a)
and point B in the I-V curve in Fig. 6(a). Panel (c) shows spatial
profile of electron density in the nonequilibrium state of ZGNR
marked by point C in Fig. 6(a), whose spin polarization is com-
pletely washed out.

middle of the ribbon, as is the case of equilibrium AF con-
figuration whose edge states penetrate deeper (when com-
pared to FM configuration) into the bulk."”

Further microscopic insight about the charge dynamics of
ZGNR driven by finite-bias voltage and current flow is re-
vealed by the profiles of electron density in Fig. 7(b) for the
insulating state and in Fig. 7(c) for the metallic state, as well
as by the electric potential profile for these two states plotted
in Fig. 8. For example, in the insulating state for both trans-
parent and resistive contact ZGNR device, the potential pro-
file in Figs. 8(a) and 8(b) is linear, as expected for tunneling.
When the band gap collapses the potential profile shows
well-defined voltage drops near the contact regions and al-
most constant behavior within ZGNR channel, as expected
for ballistic conductor. The electric potential profiles along
ZGNR in Fig. 8(a) can be directly related to spatial distribu-
tion of charges in Figs. 7(b) and 7(c). That is, increased
charge density around the contact regions in Fig. 7(c) for
nonmagnetic metallic ZGNR is responsible for the voltage
drop being confined (solid blue line) mostly around the con-
tacts in Fig. 8(a).

Since abrupt current jump at the threshold voltage, as the
most distinctive signature of voltage-driven nonequilibrium
phase transition between insulating and metallic states of
ZGNR, was not observed in recent experiments'>?* on sub-
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FIG. 8. (Color online) Electrostatic potential profile along the
line drawn in the middle of ZGNR in Fig. 7(a) for the following: (a)
applied bias voltage V,;=0.44 V and perfect coupling (¢,
=2.7 eV) of the contact regions to multiple-linear-chain leads,
where dashed red line is for magnetically ordered AF state corre-
sponding to point B in Fig. 6(a) and solid blue line corresponds to
nonmagnetic metallic state marked by point C in Fig. 6(a); (b)
coupling #.=0.27 eV and the applied bias voltage V,;=0.44 V
(dashed red) corresponding to spin-polarized state marked by point
E in Fig. 6(d) or V4=0.5 V (solid blue) corresponding to nonmag-
netic metallic state marked by point F in Fig. 6(d).

10-nm-wide ZGNR nanoribbons, we also investigate how
the threshold voltage is affected as the length of the ZGNR
channel increases. By doubling the intercontact distance,
from 6.6 nm in Fig. 6 to 13.2 nm in Fig. 9, we find that
threshold voltage increases from =0.44 V at point B in Fig.
6 to at least =0.77 V at point C in Fig. 9. The current jump
by one order of magnitude and electric potential profile in
this case are still similar to ZGNR two-terminal device in
Figs. 6(a) and 8 due to the fact that metallic nonmagnetic
ZGNR above the threshold voltage is attached to highly
transparent contacts. Nonetheless, the hysteretic behavior at
discontinuity in Fig. 6(a), we predict for short ZGNR at-
tached to electrodes via transparent contacts, is almost com-
pletely removed in longer devices.

The decrease in the ZGNR band gap size is not a gradual
process, but it is triggered when the bias voltage reaches a
specific value. This is particularly transparent in infinite ideal
ZGNR (with no voltage drop along ZGNR) of Sec. V A
where the reduction in the band gap and diminishing of edge
magnetization density is initiated when the bias voltage win-
dow becomes equal to the band gap value. With further in-
crease in the bias voltage, the gap and spin density decay
quickly to zero.’” On the other hand, in finite-length ZGNR,
the region of negligible transmission function T(E,V,) in
Fig. 9 increases from panel (b) to panel (c) with increasing
V,, from point B to threshold voltage at around point C. This
is due to electrostatic potential tilting of the local band struc-
ture, so that band gaps in different regions of the ZGNR
cover different energy ranges inside the window where we
observe T(E,V,)—0 in Figs. 9(c) and 9(d).

Although one can expect that the values of the voltage at
which nonequilibrium phase transition takes place will in-
creases with the thickness of the tunnel barrier region intro-
duced by magnetically ordered ZGNR, the values of the
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FIG. 9. (Color online) The (a) I-V characteristics, [(b) and (c)]
transmission function, and (d) electrostatic potential profile for 11-
ZGNR with the distance between the contacts twice as large
(=13.2 nm) as in the devices in Figs. 6 and 7. The coupling be-
tween carbon atoms in the contact region and multiple-linear-chain
leads is perfect (z,=2.7 €V). In panels (a) and (d), dashed red line
is for AF state of ZGNR, while solid blue line denotes I-V curve (a)
or potential profile (d) for ZGNR after its magnetic ordering is
destroyed by the applied bias voltage. Point B marks V;=0.09 V,
while points C and D correspond to V,;=0.77 V. The transmission
function (thick red) in panels (b) and (c) is computed at points B
and C, respectively, where thin solid black line illustrates energy
window f(E—eV4/2)—f(E+eV,/2) over which T(E,V,) is inte-
grated to get the current at corresponding points B and C. Thin
green line is the transmission function of an infinite ideal 11-ZGNR
at zero applied voltage. Panel (d) plots the electrostatic potential
profile along extended device ZGNR + contact regions for spin-
polarized AF configuration (dashed red) at V;=0.77 V (point C)
and nonpolarized metallic state (solid blue) at V,=0.77 V (point
D).

threshold voltage (or, more appropriately, a window of volt-
ages taking into account hysteretic behavior) one can expect
for realistic two-terminal devices are nontrivial. For ex-
ample, in abstract infinite ZGNR of Sec. V A this value is
limited®’ to =0.4 V. On the other hand, in realistic two-
terminal devices we find that the threshold voltage increases
with increasing length of ZGNR, whose schematic explana-
tion is provided by Fig. 10 depicting the tilted band
structure*” due to the applied bias voltage across narrow
ZGNR bridging the two contacts. The spin-polarized state
becomes unstable when the occupancy of the electron levels
in the valence band decreases below and the conduction-
band occupancy increases beyond the threshold level. Under
nonequilibrium conditions, the change in occupancy in the
short strips becomes possible due to the tunneling through
the band gap [Fig. 10(b)], which results in the subsequent
band gap collapse [Fig. 10(c)]. In contrast, the tunneling rate
through the band gap in long strips may be too low and the
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Conduction Band Bottom

HL HR

Bottom

FIG. 10. (Color online) Schematic explanation of how ZGNR
length affects the threshold voltage for nonequilibrium phase tran-
sition between its magnetically ordered insulating and nonmagnetic
metallic states. Top left inset depicts the graphene pattern cut out of
a single sheet, which could be used to observe band gap collapse
and destruction of magnetic ordering in ZGNR by current flow. (a)
Schematic plot of the local band gap along the dashed line in the
top right inset at zero-bias voltage V,;,=0. (b) Local band gap in the
spin-polarized state for short ZGNR under nonequilibrium condi-
tions V;,#0. (c) Electrostatic potential profile after the band gap
collapse. (d) Local band gap in the spin-polarized state for long
ZGNR under nonequilibrium conditions V,,# 0. Shading is panels
(a), (b), and (d) denotes the occupancy of electron states—the
lighter the shade is, the less the occupation probability is, where
dark color corresponds to occupation probability one.

required change in electron population cannot be achieved
for a given V,,, as illustrated by Fig. 10(d).

C. Finite-length ZGNR attached to square lattice leads

Since Sec. V B suggests that the magnitude of abrupt cur-
rent jump at the threshold voltage will depend on the quality
of contacts through which the finite-length ZGNR is attached
to external circuit, in this section we examine two-terminal
devices whose metallic leads, modeled as semi-infinite
square lattice wire, are attached laterally (rather than verti-
cally on the top of ZGNR contact region as in Sec. V B).
Several different ways of attaching square lattice leads to the

205430-12



I-V CURVE SIGNATURES OF NONEQUILIBRIUM-...

FIG. 11. (Color online) Color-coded amplitudes of the transmis-
sion matrix elements |tpq(E)| connecting transverse propagating
modes at Er=1075 in the left and right square lattice leads which
are lattice-unmatched (left column) or lattice-matched (right col-
umn) to 8-ZGNR with collapsed band gap. The ZGNR width N,
=8 and length N7=37 are the same as in the two-terminal device
studied in Figs. 12 and 13.

honeycomb lattice of ZGNR have been explored in a variety
of recent quantum transport studies.?'-%>%3 For example, one
can attach lattice-matched®® or lattice-unmatched®"% leads
illustrated in Fig. 11. The former case is matched in the sense
that the lattice constant of such lead is equal to carbon-
carbon distance in graphene.

When the hopping parameters ,;,=t.=t are selected to be
the same in the square lattice region (), across the interface
(z.), and in graphene (r=2.7 eV), the transport across the
interface is nominally ballistic rather than through a tunnel
barrier generated by reduced ¢, or mismatched ¢; and ¢. Nev-
ertheless, the conductance of lead-ZGNR-lead device can be
greatly reduced if many propagating modes from metallic
leads do not couple well to evanescent modes in GNR or to
evanescent modes plus a single propagating mode at the
Fermi energy of ZGNR with collapsed band gap®%> (which
are the only available modes to carry transport in narrow
ribbons with large gap between Er=0 and the second
subband®). Although evanescent modes are effectively en-
abling doping of GNR by metallic contacts, which is en-
hanced in short and wide GNRs,%%%7 the armchair transverse
interface of ZGNR coupled to square lattice generates con-
currently mixing of transverse propagating modes.3"®0 This
is illustrated by the nonzero off-diagonal elements of the
transmission matrix

t(E) = \I'R(E) - G(E) - \T',(E) (37)

in Fig. 11 for metallic ZGNR (assuming collapsed band gap)
at the Dirac point Ex=107%, which is equivalent to the pres-
ence of disorder at the interface.

Furthermore, the mode mixing is stronger, with larger off-
diagonal t-matrix elements, for lattice-unmatched leads in
Fig. 11. Therefore, the corresponding linear-response resis-
tance R=§(2Pq|tpq|2)‘1 of the device in Fig. 12 (assuming
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FIG. 12. (Color online) Spatial profile of spin [panel (a)] and
charge [panels (b) and (c)] density within finite-length 8-ZGNR
(width =1.5 nm; length ~4.4 nm) connected to square lattice
leads at the threshold voltage V;,=~0.4 V: (a) spin density in the
state marked by point B in Fig. 13; (b) charge distribution in the
same state as in panel (a); and (c) charge distribution in the nonpo-
larized state marked by point C in Fig. 13.
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o
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collapsed band gap) is R=~2.7h/e? (the resistance quantum
hle? is 25.8 k(). On the other hand, the corresponding de-
vice with the same 8-ZGNR channel length (N7=37 or
~4.4 nm) and lattice- matched leads in the right column of
Fig. 11 has R=2.29h/e>. The decay of the resistance with
the 8-ZGNR channel length in the absence of defects, edge
scattering, impurities, and acoustic phonons (all of which
were taken into account to extract the mean-free path and
contact resistance from R vs N; plot in Ref. 12) is due to
reduced overlap of evanescent modes injected by two metal-
lic electrodes.%” For realistic contacts between various metals
and graphene, one would also have to control the alignment
of differing energy levels at the interface in order to reduce
the effect of the Schottky barrier on the contact
resistance.!>%8

We choose the setup with lattice-unmatched leads in Fig.
12 as the device with lower contact transparency to investi-
gate their effect on the observability of voltage-driven col-
lapse of edge magnetic ordering and the band gap corre-
sponding to it. The current jump in Fig. 13 is much less
pronounced than in Figs. 6 and 9, but it is still observable.
This demonstrates that the value of the contact resistance
itself, which is generated by different transport mechanisms
for devices in Figs. 7 and 12, is not the only reason for
reducing the current jump at the threshold voltage. More-
over, despite poor contact between metallic leads and ZGNR,
we still find hysteretic behavior in Fig. 13(a), which [assum-
ing that it is not an artifact of self-consistent convergence
algorithm for nonequilibrium electron densities (see Appen-
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FIG. 13. (Color online) (a) The I-V characteristics, (b) transmis-
sion function, and (c) electric potential profile for 8-ZGNR (width
~1.5 nm; length =4.4 nm) two-terminal device depicted in Fig.
12. The hopping parameter on both square and honeycomb lattice is
ty=t=2.7 eV. In panels (a) and (c), dashed red line denotes AF
insulating state of ZGNR, while solid blue line corresponds to me-
tallic state with destroyed spin polarization and collapsed band gap.
Panel (b) shows the transmission function in magnetic (red) and
nonmagnetic (blue) states of ZGNR marked by points B and C in
panel (a), respectively. Thin black line illustrates energy window
f(E—eV /2)—f(E+eV,/2) over which T(E,V,) is integrated to
get the current at the corresponding points B and C. The potential
profile in panel (c) is plotted along the line drawn in the middle of
ZGNR in Fig. 12(a). Thin vertical lines in panel (c) mark the
boundaries of the extended device ZGNR + portion-of-metallic
leads, shown in Fig. 12, across which the self-consistent voltage
drop is calculated.

dix)] could also be used to confirm the band gap collapse in
the nonequilibrium state of ZGNR.

One can also compare the charge-density redistribution in
Fig. 12 and electric potential profile in Fig. 13(c) to those in
Sec. VB for a two-terminal ZGNR device with different
types of contacts. To ensure that electric potential approaches
the constant values in the bulk of the electrodes, a portion of
the square lattice leads are attached to ZGNR to form an
“extended device™ shown in Fig. 12 for which self-
consistent calculations are performed. Thus, the charge trans-
fer and potential disturbance caused by ZGNR are screened
off outside the extended device region [voltage drop within
the extended device region is enclosed by two vertical lines
in Fig. 13(c)], so that potential at the edges of the extended
device region matches to constant potential along the ideal
semi-infinite electrodes.

VI. CONCLUSIONS

In summary, we predict voltage-driven nonequilibrium
phase transition between magnetically ordered (Slater) insu-
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lating state and nonmagnetic metallic state in finite-length
zigzag graphene nanoribbons. The ZGNR is attached to two
metallic electrodes, where finite-bias voltage brings such
two-terminal device into a nonequilibrium steady state with
current flowing through it. The high density of states at the
Fermi level, due to special topology of zigzag edges, results
in instability when Coulomb interactions are taken into ac-
count, which is resolved through spin polarization around the
edges in equilibrium. The spin-polarized state survives in
nonequilibrium when the current flowing through ZGNR is
small. However, at finite threshold voltage, the edge mag-
netic ordering is destroyed together with the band gap deter-
mined by the staggered potential of the magnetization den-
sity profile.

The abrupt jump of the current at the threshold voltage, as
one of our principal predictions, has unique and experimen-
tally observable features: (i) current can increase by one or-
der of magnitude when the bias voltage is tuned across the
threshold voltage; (ii) a hysteresis in the I-V curve can occur
around the window of threshold voltages; (iii) the value of
the threshold voltage increases with increasing nanoribbon
length; and (iv) the magnitude of the current discontinuity is
reduced for poorly transparent contacts or metallic electrodes
whose transverse propagating modes do not match well to
ZGNR modes (propagating or evanescent) that can carry cur-
rent.

While these unique features can be tested with devices
amenable to presently nanofabrication technology, they have
not been observed in recent experiments!>?3 on sub-10-nm-
wide graphene nanoribbon-based field-effect transistor de-
vices which have displayed a sizable band gap for bias volt-
ages up to 1 V. Thus, we delineate two prerequisites for
observing the collapse of the band gap and underlying mag-
netic ordering through the measurement of /-V characteris-
tics of ZGNR two-terminal devices:

(1) The contact resistance between ZGNR and metallic
electrodes should be kept low. This does not imply that the
contacts must be perfectly transparent. Our results indicate
that the /-V curve signatures of the band gap collapse should
be observable even when the contact transparency constitutes
20% from the ideal value, which corresponds to experimen-
tally measured contact resistance of =60 k() in GNRFETSs
with top-deposited Pd electrodes.'?

(2) The threshold voltage and the corresponding threshold
current required to collapse the band gap of sub-10-nm-wide
ZGNRs increase with increasing in nanoribbon length. The
threshold source-drain voltage for sub-10-nm-wide ZGNR
which is =6.6 nm long is =0.44 V, and for ZGNR which is
twice as long =13.2 nm the threshold voltage V, increases to
~(.8 V. At the same time, the shortest ribbon for which the
experimental /-V curve measurements were performed!? was
~110 nm long and the applied source-drain voltage did not
exceed 1 V. This suggests that the threshold criteria have not
been met. The decrease in the ZGNR length down to 10-20
nm range could result in experimental observation of pre-
dicted current-flow-induced transition between spin-
polarized and nonpolarized ZGNR states.

Thus, fabricating proposed devices—short graphene nan-
oribbon with atomically ultrasmooth zigzag edges*} sand-
wiched between as transparent metallic contacts as
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possible—can be used to detect the presence of unusual s-p
magnetism of carbon atoms along zigzag edges in unambigu-
ous fashion and with all-electrical setup. If the predicted
band gap collapse can be induced in such devices, the I-V
curve measurements will also probe aspects of spin dynam-
ics in ZGNR. For example, if the current is turned off after
ZGNR has been transformed from spin-polarized semicon-
ducting to non-polarized semimetallic state, the spin-
polarized state is expected to be restored with some time
delay 7. That can be explained as follows: the energy gain
associated with small increment of the spin-polarized density
at the zigzag edges is proportional to the spin density already
accumulated at this edge. Because the spin density in nonpo-
larized state is zero, no first-order driving force is present to
transform the system from nonpolarized to spin-polarized
state. The delay 7.5 can be measured as the time needed for
I-V curve to change its character from conductive to highly
resistive state. The time delay 7., in the onset of the band
gap collapse after current is turned on is expected to be much
smaller than 7. However, if 7., can be measured, informa-
tion on electron velocity in the edge states, spin ordering,
and the dependence of spin ordering on temperature could be
deduced in principle. The controllable resistance switching
of ZGNR also has a potential for device applications, such as
nonvolatile resistance random access memories.
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APPENDIX: SELF-CONSISTENT ALGORITHM FOR
NONEQUILIBRIUM ELECTRON DENSITY IN ZGNR

We compute the nonequilibrium solution using the volt-
age step AV=0.01 V. For the magnetically ordered ZGNR,

PHYSICAL REVIEW B 79, 205430 (2009)
the solution for ijz uses the solution for ij; ! as the starting
point. Calculations for the spin-polarized case start with
vf,‘?:o and proceed to the point V, beyond which the con-
vergence toward the self-consistent solution cannot be ob-
tained. Even though the inability to obtain convergence does
not constitute a proof of the solution nonexistence, we as-
sume that V, reached in this fashion is the threshold voltage
at which spin polarization is destroyed. The Newton-
Raphson algorithm described in Sec. III guarantees the con-
vergence toward the self-consistent solution, provided that
sufficiently small portion of ény, obtained from Eq. (24) is
used to augment my, of the previous iteration. This self-
consistent solution is not guaranteed to correspond to the
lowest energy and depends on the initial electron density.
Our algorithm monitors the convergence and adjusts the step
along dn;, vector to ensure that the n;, is changed in a such
way that the difference between n;, and n,,, decreases during
each iteration.

When the step @ becomes too small, i.e., the input density
correction «a X dn;, corresponds to the maximum potential
variation of less than 1 meV that is still not small enough to
make the difference between n;, and n,, in a current itera-
tion less than in a previous one, the calculation stops. Even if
the self-consistent solution can be obtained by further de-
creasing the step a, it will be highly unstable with respect to
the external perturbations on the order of 1 meV. In a usual
experimental environment this is equivalent to nonexistence
of spin-polarized solution.

The nonpolarized solution is obtained for sufficiently high
applied voltage, such as V; ,=1.0 V, to ensure the solution
stability. Then, the solutions for the lower voltages are com-
puted using the higher voltage solution as the starting points.
The calculations stop when the same criteria for the thresh-
old voltage as in the case of spin-polarized solution are met.
This can lead to well-pronounced hysteresis in the I-V
curves, depending on the contacts, as illustrated by Figs.
6(a), 9(a), and 13(a).
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